Chapter 11: Liquids & Intermolecular Forces

Kahoot!

- 1. Which of the following are polar molecules? Kr, MgO, I₂, PH₃
- 2. Which force below increases in strength as the molecular weight of the compound increases? Hydrogen bonding, Ion-dipole, Dipole-dipole, London dispersions
- 3. Which compound below is NOT capable of forming hydrogen bonds? CH₄, NH₃, H₂O, HF
- 4. Which compound has the strongest intermolecular force? CaO, NH₃, H₂, HF
- 5. Which compound has the strongest intermolecular force? F₂, Cl₂, Br₂, I₂
- 6. Which compound has the strongest intermolecular force? NO, CCl₄, H₂S, Ne
- 7. Which property is NOT affected by intermolecular forces? Boiling point, Color, Melting point, Viscosity
- 8. The ease of changing the charge distribution in a molecule is called its ____. Conductivity, Solubility, Polarizability, Viscosity
- 9. Which compound below has the highest boiling point? H₂O, H₂S, H₂Se, H₂Te
- 10. Which element below has the highest boiling point? Kr, F₂, Cl₂, Br₂
- 11. When heat is added to ice at zero degrees Celcius, what happens? T increases, T decreases, T doesn't change, a supercritical fluid forms
- 12. The highest temperature at which a substance can exist in its liquid state is called its ____ point. Boiling, Freezing, Triple, Critical
- 13. At high altitudes, the boiling point of water is ____. 100° C, $> 100^{\circ}$ C, $< 100^{\circ}$ C, $= T_{\rm f}$
- 14. The substance that would evaporate most easily is one with ____ forces and a ____ molar mass. Weak; large, Weak; small, Strong; large, Strong; small
- 15. Which compound has the highest vapor pressure? H₂O, H₂S, H₂Se, H₂Te
- 16. Which element has the highest vapor pressure? Kr, F₂, Cl₂, Br₂
- 17. Wat does the triple point describe? Equilibrium of 3 phases, Where 3 phases meet, How 3 phases form, How 3 points are created

WhiteBoard Examples

Clausius-Claperon Example: What is the heat of vaporization of X if the vapor pressure at 0° C is 250 torr and the vapor pressure at 100° C is 500 torr? (answer: 5.80 kJ/mol)

What do we know? $T_1 = 0$ °C + 273.15 = 273.15K, $P_1 = 250$ torr, $T_2 = 100$ °C + 273.15 = 373.15K, $P_2 = 500$ torr

What do we want to know? ΔH_{vap}

What relationships do we know?
$$\ln\left(\frac{P_{vap,T_1}}{P_{vap,T_2}}\right) = \frac{\Delta H_{vap}}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

The work:

$$\frac{R}{\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)} \ln \left(\frac{P_{vap,T_{1}}}{P_{vap,T_{2}}}\right) = \frac{\Delta H_{vap}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right) \cdot \frac{R}{\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)}$$

$$\Delta H_{vap} = \frac{R}{\left(\frac{1}{T_{2}} - \frac{1}{T_{2}}\right)} \ln \left(\frac{P_{vap,T_{1}}}{P_{vap,T_{2}}}\right) = \frac{8.3145 \frac{J}{mol \cdot K}}{\left(\frac{1}{373.15K} - \frac{1}{273.15K}\right)} \ln \left(\frac{250torr}{500torr}\right) = 5874J$$